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A New Criterion for Automatic Phase Correction of High-Resolution NMR
Spectra Which Does Not Require Isolated or Symmetrical Lines
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A new method called ZOE (zero-order equality) for automatic
phase correction of routine FT-NMR spectra is proposed. Start-
ing from the notion that the ratio between the integrals of a
peak in the imaginary and in the real part of the spectrum is
correlated to the phase of the peak, a function is constructed
which goes to zero when the spectrum does not need first- or
higher-order corrections. The root of this function can be rapidly
found by iteration and furnishes the value for first-order phase
correction. Also, an ancillary very fast peak-finding algorithm
is proposed which is insensitive to phase distortions. Experi-
mental results show that ZOE succeeds when other methods
cannot be applied, the main requirements being a fair baseline
and S/N ratio, which are often fulfilled in routine high-resolution
'"H NMR (and not, for example, in the field of in vivo spectros-
copy). Other requirements, such as phase errors of less than
second order and phase differences within the peaks not greater
than =, are usually met in high-resolution spectroscopy. « 1994
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INTRODUCTION

Pulsed NMR spectra are usually displayed in their ab-
sorptive mode, which has the advantages over other presen-
tations (such as dispersive, magnitude, or power spectrum)
of higher resolution and proportionality between the peak
integral and the number of nuclet which give rise to the signal.
Spectra after Fourier transformation are not absorptive, be-
cause of experimental reasons (/). The resulting phase
anomalies are easily cured by software, taking linear com-
binations of the real and imaginary parts of the spectrum.
The correction generally applied is
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where R, and 7, are the real and imaginary components of
data point k, R} and 7 are the new components after the
correction, N is the number of points, and « and 3 are the
zero- and first-order phase correction parameters. These last
two are found by the spectroscopist by trial and error (ex-
perience plays a major role here), and this is certainly the
most general and maybe the most accurate way of finding
them.

Many automatic methods have been proposed for finding
« and 8 by computer. They differ in the requirements they
impose on the spectra to be processed. Some of them require
a good baseline (2), others a Lorentzian shape for the peaks
(3), and others the presence of at least two isolated and
symmetric peaks (4, 5). Some of them are computationally
very intense (6), while others require interaction with the
user, so they are not truly automatic (7). Recently a new
method has been presented which is claimed to be very robust
and generally applicable (8). This method fits the phases of
points at peak position with Eq. [3] (see below). Actually
there is no theoretical evidence of the latter being tolerant
of overlapping peaks; the authors themselves accept that ex-
tended overlap could represent a problem. Personal expe-
rience shows that the cited method is fooled by multiplets
usually encountered in proton spectroscopy. In conclusion,
the method presented in Ref. (8) is limited in applicability
to in vivo spectroscopy, for which it was indeed devised.

In this paper, a new method is presented which is designed
for routine high-resolution 'H spectra. It is deliberately tol-
erant of overlapping peaks and inhomogeneous magnetic
fields (i.e., non-Lorentzian lineshapes). It has not been tested
on in vivo spectra; theoretical considerations, however, would
suggest that our approach is not suitable, because of the large
baseline and phase distortions typical of in vivo spectroscopy.

THE ZOE CRITERION

An NMR spectrum in the time domain (a FID) is a com-
plex quantity which can be expressed as a sum of damped
sinusoids, each one with its own phase,
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/([) = Z 4/CXp(lw/[ + (bj)g,([), [2]

J

where A4;, w;, and ¢, are, respectively, the intensity, the fre-
quency, and the phase of each signal, while gi(¢) ideally is
an exponential decay, giving rise to a Lorentzian lineshape
in the frequency domain. Here we let g/(¢) be any reasonable
real function.

Normally the phases are a linear function of the frequency

w,
¢/:¢()+—i¢l- [3]

N

Here and in the following we assume for simplicity that the
frequency in the spectrum is measured in number of points,
the minimum frequency being 0 and the maximum (equiv-
alent to the spectral width) being N. Coefficients ®; and ¥,
are conceptually distinct from « and 8 of Eq. [1], the former
being part of an ideal model of the spectrum, while the latter
are the corrections apported by the spectroscopist. For the
spectrum to be correctly phased, o and 8 should have, re-
spectively, the values — &, and — ®,.

In the limiting case where &, = 0, all the frequency com-
ponents add coherently at time ¢ = 0, giving the complex
quantity

f(0) = exp(®) 2 4,8(0) = 2 F(k), [4]
J &

whose module is the sum of the (weighted ) intensities and
whose phase is just ®;.

The second equality recalls a known relation between
Fourier pairs, namely that the quantity F(0) is equivalent
to the integrated area of the frequency-domain spectrum
F(w). Particularly, / define the angle 6,,- as the function
_ =i

94 g\ >
k-q R

6 = arctan( 7,,) for >R > 0,

§ = arctan(7,,) + = for 2R <0and T, > 0,
6 = arctan(T,,) — = for > R<0and T,;, <0, [5]

so that fyy is equal to &, if and only if &, = 0. At the same
time, if the interval g- - - ¢’ completely encloses a single
peak j and does not include any part of any other peak, then
0y = &;.

The angle 8,y gives a quick but rough way of phase-cor-
recting a spectrum, namely to multiply it by exp(—ifoy).
This kind of correction, first suggested by Ernst (9), gives
satisfactory results only if the spectrum is made up by a

single line; nonetheless, it ensures that the real part is nearer
to absorption than the imaginary one. To be more precise,
it ensures that at one frequency x (with 0 < x < N) the
spectrum is correctly phased, and, since the phase at each
point & is proportional to (kK — x}, we can be sure that

k—x

¢k=q>|T<q’1- (6]

We shall see later that this is a good starting point for the
ZOE algorithm,

Equation [4] shows a simple property of &, : If each point
k of the spectrum were multiplied by exp(—ik®,), then all
the peaks of the spectrum would have the same phase. The
ZOE criterion is simply an arbitrary transposition of this
property, which substitutes 3 for — &, and 8,,- for the phase
of a peak. It can thus be stated, the optimal first-order phase
correction 3, when applied, would make equal the values of
two 8,,- angles calculated over different intervals of the spec-
trum. That is, zero-order equality for the whole spectrum.

To understand how we can find # using ZOE, we shall
first examine a hypothetical spectrum composed of two
completely separated lines with frequency r and /, with r <
{. Let us suppose that point m is in the flat region between
these two peaks (r < m < /). One can easily see that 6,,, and
9,,» now measure the distinct phases ¢, and ¢; of the two
noninterfering peaks. If we apply a first-order phase correc-
tion 8 to the spectrum, point & will undergo the rotation
described in Eq. [1] and #,, and 6,5 will also change. We
can obtain their dependency on 3 by simply noting that the
phase of each signal will vary according to

@w>=@m)+6§,

[
¢/(B) = ¢(0) + 8.

~ [7)

For analogy,

%Mm=%ﬂm+6ﬁiHEWL

{
Bun(B) = 8,n(0) + 8 Nhi 27pdB). [8]

Thus we have two linear dependencies, both with a positive
slope (in particular, 0 < slope, < slope; < 1). The # functions
can only assume values between +x, so if we are plotting
the functions 6 versus (3, these will be cyclically discontinuous
at intervals 2o N/r and 2w N// (note that these intervals are
always larger than 27). Figure 1 shows the typical saw-
toothed shape of these functions. The function
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The typical behavior of the functions 6,,- and Af (see text).

FIG. 1.
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AB(B) = Bmn — borm = AH(0) + B 9]

still resembles this shape, with slope (/ — r)/ N still contained
in the interval O- - - 1, and also inherits the discontinuities
of both functions [8].

According to the ZOE principle, the optimal first-order
phase correction is obtained by equating the right sides of
Egs. [8],

N AB(0)

Pzoe = A0) 75 = ~ 380/08

[10]

Equation [10] suggests that 8zog can be computed from
the starting values (8 = 0) of A# and its first derivative re-
spective to 8. The value so found may be equal to or different
from that given by the formula

ﬁ:_¢/—¢rN’
[—r

(1]
which could of course be used directly, but here we suppose
that ¢, and ¢, cannot be measured.

In fact, function [10] has the infinite roots given by the
formula Bzoe * 27(r — )/ N, while Eq. [11] gives only one
“good” root. Care must be taken to avoid finding a spurious
solution. In the first place, we can correct to zero order as
suggested above, setting a = — 8. This reduces the absolute
values of 8p,,(0) and 6,,,4(0), pushing away the discontinuities
from the point 8 = O (see Fig. 1). If both ¢, and ¢, are less
(in absolute value) than =, then we can be sure that Eqs.
[10] and [11] give the same solution. For Eq. [6] this last
condition holds necessarily if |®,] < 7 and is very likely to
hold for bigger values, up to 2x. In fact, if x in Eq. [6] is
such that both (/ — x) and (x — r) are not greater than N/
2, this is exactly the validity range. ®, originates mainly
from the time lag At between the reading pulse and the start
of acquisition and is theoretically predicted to be

2w At

= — 12
dwell time [12]

This corresponds to a negative value for 3. Knowing that,
one could first apply a correction like a = ~8yn, 8 = —,
in order to increase by another = the range of applicability
of ZOE. Even better, a rough estimate of ¥, can be done
based on the values of Az and of the spectral width. Normally
this is not necessary, because &, is not so high; even when
1t is, strong first-order phase distortions have been shown to
give a poor baseline (/0), so it would be better to reduce At
or to reconstruct the missing points through linear prediction
(11, 12). Summarizing, the main prerequisite for applying
ZOE is that all the peaks must have a phase less, in absolute
value, than =; this requisite can be easily satisfied.

Coming back to Eq. [10], this is not the safest way of
finding 870¢ numerically. Due to the low slope of A8, a small
imprecision in computing the derivative will lead to large
deviations from the exact solution. We already know the
sign of the derivative. So, starting from 8 = 0, we shall move
away in fixed steps toward negative or positive values, re-
spectively, if Af is positive or negative, until the function
changes sign. Figure 1 shows that going in the prescribed
direction, the first root will always be met before the first
discontinuity and that large steps up to = will bracket a root
and never a discontinuity. Steps of /2 are a good compro-
mise between speed and accuracy. Having restricted the so-
lution in a range as large as the steps taken, one can obtain
8 by linear interpolation of the two extremes of this range.
A further refinement substitutes the linear interpolation with
the similar root-finding method known as ““false position™
(13). The latter is iterative but, due to the linear nature of
the problem, is likely to converge in a very few steps (the
precision needed is only on the order of 1072 rad). At this
point the zero-order correction is simply given by

_ 60»1( BZOE) + BmN( BZOE)

A70E — 5

(13]

This example was developed only to derive the principal
equations of the problem, but is not the one for which ZOE
is designed. In fact, in such a simple case, a method like
DISPA (4) would be faster and more accurate. Let us now
consider the more general case where the point m completely
divides not just two peaks, but two ensembles of (overlap-
ping) peaks. Now not only do the #’s not correspond to the
phases anymore, they are also not necessarily linear. None-
theless, the previous discussion holds qualitatively and, in
the proximity of the solution of Eq. [11] (i.e., in the absence
of first-order phase distortions), even holds quantitatively
because of Eq. [4]. Here again the ZOE criterion helps, sug-
gesting that the solution of Eq. [10] should be the same as
that of Eq. [11].

Even if the procedure described so far produces good re-
sults, it can be improved if Af is redefined upon narrower
intervals, that is, replacing Eq. [9] with
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AB(B) = Oppr — buu- [14]
Theintervalsa- - - a’and b- - - b’ still enclose two different
ensembles with 0 < a < a’ < b < b’ < N. The advantages
of the latter case are proximity to the ideal case of two single
peaks, because the effect of ¥, is reduced in a narrower in-
terval, speed of calculation, because the summations are
taken over less points, and removal of the edges of a spectrum
where baseline could be of concern because of the aliased
tails of stronger peaks. Yet we need a way of obtaining the
values of the four extremes. This is explained in the following
section. Figure 2 represents the block diagram of a program
based on the ZOE principle.

Although the requirement of two isolated ensembles of
peaks is far less stringent than that of two isolated symmet-
rical singlets, it is still difficult to satisfy in 'H or *'P in vivo
spectroscopy. This is another reason for restricting the range
of applicability of ZOE to high-resolution spectra.

THE PEAK-FINDING ALGORITHM

The aim of this algorithm is to find two intervals which
completely enclose two distinct, distant, and isolated ensem-
bles of peaks. It is composed of the following steps:

(1) The entire spectrum is divided into » regions 5 to 10
times as large as the average linewidth; typically # is a power
of 2, ranging from 128 to 1024, whose exact value is not
critical. Each region is characterized by a positive number
A, given by the difference between the tallest and lowest
points, wherever they lie, in the real or in the imaginary part.
A is an inverse measure of the flatness of a region.

(2) The average up and standard deviation oy of the A’s
are calculated, where B stand for “baseline.”” The individual
regions are then divided into the two categories of baseline
(A < ug + 3op) and peaks (A = ug + 30p). The process is
iterated over the remaining baseline regions until no A in
this category exceeds the quantity ug + 30p.

(3) The lowest- and highest-frequency regions classified
as peaks are the starting basis for the desired intervals. They
are extended to enclose all the contiguous regions whose A
1s greater than the last calculated ug.

(4) The intervals so found are further expanded until the
condition is matched that the first extraneous regions have
larger A than the contiguous internal one.

This algorithm should ideally be applied to the dispersion
spectrum, to encompass the larger spectral regions over which
the long peaks’ tails extend. The best which can be done is
to consider simultaneously the real and imaginary part, so
at worst we will examine a region misphased by only = /4.

The computational effort consists of 2# additions, less than
2n subtractions, # squares, and a few divisions. Since 7 is a
small number, the algorithm is very efhicient in computa-
tional speed. It also characterizes the baseline regions, giving

begin
4
I ZERO ORDER PRE - CORRECTION I
1
[ PEAK - FINDING l

4
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4

| BRACKETING OF 870: |
{

| FALsE posiTION 1TERATION |
l
I PHASING THE SPECTRUM1

1

end

FIG. 2.
terion.

Block diagram for a computer routine based on the ZOE cri-

information which in turn can be used to baseline-correct
the numerical integrals in Eq. [5]. Points just outside an
interval can be used to estimate and correct the baseline in
their proximity, provided that the interval is small compared
to the spectral width, the interval is so large that its bounds
are far from the internal peaks, and there are no other peaks
nearby. The algorithm described can readily test if these con-
ditions are matched by the intervals it has found.

EXPERIMENTAL AND RESULTS

High-resolution 'H and '*C spectra of ethy! crotonate in
CDCl; were acquired on a Varian Gemini 200 CH spec-
trometer at 200 and 50 MHz, respectively. These spectra
were chosen as representative of routine spectra of moder-
ately concentrated samples in an organic chemistry depart-
ment. Spectra were transferred to a Macintosh computer for
processing with the SwaN-MR software package. The 'H 4K
FID was zero-filled to 8K, while a 2 Hz line broadening was
applied to the '*)C 8K FID. Routines for ZOE automatic
phasing were written in C and added to the SwaN-MR code.
Phasing with the DISPA algorithm was accomplished with
the built-in SwaN-MR command. This command requires
the user to specify two reference peaks.

Figure 3a shows the spectrum of ethyl crotonate after FT,
without phase correction. Although this spectrum has a good
S/ N ratio and little baseline distortion, it presents a challenge
for many automatic and semiautomatic phasing algorithms,
because of the absence of singlets and poor homogeneity of
magnetic field. Figure 3b shows the best result which could
be obtained with the DISPA algorithm, using the signal in-
dicated by the arrows as reference signals. ZOE algorithm
was first applied without the peak-finding routine, using Eq.
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FIG. 3. (a) 'H spectrum of ethyl crotonate without phase correction. {b) The spectrum corrected by the DISPA method. The arrows point to the
reference peaks. (¢) The spectrum after ZOE correction. The arrows indicate the frequencies as in Eq. [14] as determined by the automatic peak-finding
routine.
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FIG. 4. The same as in Fig. 3c, but with the intervals of Eq. [9].
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[8], with m directly supplied. The result is shown in Fig. 4,
which is already superior to the DISPA result. Then the peak-
finding routine was added, which gave the result shown in
Fig. 3c. Time required was less than two seconds on a
MC68030 computer running at 16 MHz. While the phase
correction is constantly improving, correct phase for all the
signals could be obtained only manually. Figure 5 shows the
results obtained on the '*C spectrum of the same sample.
Here the best results were obtained by the DISPA method,
which proved to be the method of choice, while ZOE was
misled by a peak with a very low S/ N ratio. In this case of
ZOE principle itself could have given better results if the
peak-finding routine were more sophisticated.

The spectra were deliberately misphased to various extents
and rephased using ZOE. The same results were consistently
obtained if the first-order phase distortion was less than .
As predicted, with higher values the algorithm sometimes
found a different solution. The sensitivity to bad baseline
was tested. The first three complex points of the 'H FID were
zeroed, producing a very distorted baseline. As could have

been expected, here DISPA continued to gave better results.
A baseline correction could not be introduced in the inte-
gration stage of ZOE, because the conditions outlined in the
previous paragraph were not simultaneously satisfied. In
other test spectra in which baseline correction was feasible,
ZOE gave good results. In this case, a zero-order baseline
correction is sufficient, that is, subtracting in the integrated
interval the average of the outside points.

CONCLUSION

My personal opinion is that manual phase correction still
gives the most accurate results. Nonetheless, automatic rou-
tines can save much time by yielding an approximate solu-
tion. Results show that is difficult to find one method good
for all seasons. In this respect, the different methods proposed
in the literature can be divided into two classes: those which
use all the spectrum (at least in the real part) and those
which concentrate on the centers of taller peaks. While the
former suffer from poor baseline and S/ N, the latter are less

-
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same meaning as those in Fig. 3.
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13C spectrum of ethyl crotonate without phase correction (a), with DISPA correction (b), and with ZOE correction (c). Arrows have the
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tolerant of poor resolution, bad lineshapes, and peak overlap.
The same two classes of methods have been so far differ-
entiated by their numerical properties, the former being
composed of iterative procedures, while the latter find their
solution directly. Actually, many methods include an iter-
ative procedure in one of their steps, e.g., full automatic
DISPA (4). In this respect, ZOE represents an exception in
the first class, in that the iterative root search is adopted only
for numerical accuracy and is not intrinsic to the principle.
Previous strategies, like the simplex method proposed by
Siegel (14), blindly seek the maximum of a function to be
optimized in two-dimensional space. ZOE not only requires
less computing time, but is also less sensitive to the starting
conditions and does not risk convergence to an erroneous
local maximum. Finally, in favorable cases, even the baseline
problem can be alleviated.

The method described in this paper was designed having
in mind the spectra normally obtained inside a fine chemistry
department and that was inevitably reflected in the limits of
the method itself. So these limits must be carefully considered
before trying to apply the ZOE principle in a different area.
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