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Automatic phase correction of 2D NMR spectra
by a whitening method
Giuseppe Balaccoa and Carlos Cobasb∗

A new method for the automatic phase correction of multidimensional NMR spectra is described. It is based on the whitening
concept formulated as the ‘maximization of the number of white pixels into a bitmap that corresponds to the spectrum’. This
process of maximization can be factorized along the individual axes of the spectrum and this property makes the method robust
and fast. It employs a statistic measure based on a large number of spectral data points and, for this reason, is very tolerant
to low signal-to-noise ratio (SNR) and local artifacts. The algorithm can efficiently phase either homonuclear or heteronuclear
experiments and, unlike other previous methods, it can also process automatically spectra containing positive or negative
peaks so that it is not necessary to deal with individual or special cases Copyright c© 2009 John Wiley & Sons, Ltd.
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Introduction

Traditionally, 2D NMR spectra were presented in magnitude or
power mode for reasons of operational simplicity. However,
nowadays, the majority of multidimensional NMR spectra of
liquid samples is routinely acquired in phase-sensitive mode
because of its inherent advantages in spectral resolution and
the ability to resolve resonances which would have otherwise
overlapped in a magnitude/power spectrum.[1] Furthermore,
many multidimensional experiments (NOESY, edited HSQC, etc)
have peaks with both positive and negative intensity, and this
information would be lost in the magnitude or power modes.

Phasing an n-dimensional spectrum involves forming a linear
combination of the 2n components in the hyper complex space to
get absorptive lines in all orthogonal dimensions. Although it has
been shown that a phase correction can be rendered unnecessary
by a precise fine tuning of experimental acquisition parameters,[2]

a post-FT phase correction will normally still be required due to po-
tential instrumental instabilities or to spectra being acquired under
different experimental conditions. Traditionally, the trigonometric
coefficients of the linear combination (two parameters per
each dimension) are determined empirically by a process called
‘manual phase correction’ with the help of interactive software.

In older applications, the correction is not applied directly on
the matrix. What the user can do, instead, is to extract selected
rows and columns from it, correct the phase for these traces, then
ask the software to apply the same correction on the whole matrix.
Modern applications allow, in addition to the method above, the
direct manipulation, in real time, of a bi-dimensional plot. The
experience with both methods tells that phase correction of a
2D spectrum is not more complicated than phase correction of
a 1D spectrum, despite the higher number of parameters to be
adjusted (4 instead of 2). In other words, it is never necessary to
adjust all the parameters simultaneously, but it is possible instead
to sequentially perform the correction along the individual axis.

While manual correction, as permitted by today’s software, can
be extremely accurate, the availability of an automatic method can
simplify the job and reduce processing time. Automatic correction
of 2D NMR spectra is of particular importance in platforms aimed

to work in a fully unattended mode, such as in fields as varied
as metabonomics,[3] structure analysis and verification of small
molecules,[4] protein structure[5] and open access laboratories.

The literature is rich in articles[6 – 18] dealing with the automatic
phase correction of 1D NMR spectra, but only a few papers
were found that directly address the multidimensional problem.
Cieslar et al.[19] proposed the first algorithm for automatic phase
correction of 2D NMR spectra, which maximizes peak asymmetry
and peak height of the diagonal peaks, and which therefore is
limited to homonuclear experiments only. A different approach
was taken by Hoffman et al.[20] based on the Dispersion vs
Absorption (DISPA) method, which is a plot of the dispersion
component of the signal against the absorption component. As in
all DISPA based approaches, the algorithm is critically dependent
on the accuracy of peak selection.

An enhanced procedure was introduced in the PROSA
program,[21] which has been designed to correct higher dimen-
sional spectra taking advantage of the fact that a typical 3D- or 4D
spectrum is sparse and presents numerous sufficiently isolated res-
onances. A more recent method called Phase Angle Measurement
from Peak Areas (PAMPAS)[22] calculates the phases of isolated
peaks across individual traces in the nD spectrum by using Fourier
analysis of a series of peak areas measured with systematically
incremented phase shifts. The zero- and first-order corrections are
then found by linear regression.

We have recognized that manual phase correction, when
performed by a skilled operator, is a methodical process, evidently
driven by a principle. We have investigated if this inner principle
could be expressed as an algorithm, and found that the principle
could be formulated in different ways. A simple one, referring
to the bitmap representation of a 2D spectrum is: ‘maximize the
number of white points’.
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In this article we present a new algorithm for automatic 2D
phase correction based on the above concept which, unlike other
methods, works directly on the 2D matrix, taking advantage of
all informations contained in the hypercomplex space and thus
making it robust to local artifacts and low signal-to-noise ratio
(SNR). Despite the apparent high-computational cost involved
in this approach, the algorithm herein presented is very fast
and simple, producing very good results for wide ranges of
multidimensional NMR experiments.

Discussion

In the following text, for the sake of simplicity, we will consider
the case of automatic processing of 2D NMR spectra, but the
approach is extensible to higher dimensional spectra. 2D Fourier
transform of phase-sensitive experiments yields a hypercomplex
matrix consisting of four components RR, RI, IR, II (R = Real;
I = Imaginary). In general only the RR quadrant is displayed.
Phasing of this hypercomplex matrix is carried out through a
rotation of the 2D matrix in the hypercomplex space by applying
the following linear combination:

RR′ = cos ψ1 cos ψ2 RR − sin ψ1 cos ψ2 IR

− cos ψ1 sin ψ2 RI + sin ψ1 sin ψ2 II (1)

IR′ = sin ψ1 cos ψ2 RR + cos ψ1 cos ψ2 IR

− sin ψ1 sin ψ2 RI − cos ψ1 sin ψ2 II (2)

RI′ = cos ψ1 sin ψ2 RR − sin ψ1 sin ψ2 IR

+ cos ψ1 cos ψ2 RI − sin ψ1 cos ψ2 II (3)

II′ = sin ψ1 sin ψ2 RR + cos ψ1 sin ψ2 IR

+ sin ψ1 cos ψ2 RI + cos ψ1 cos ψ2 II (4)

where

�2 = α2 + (k/N)β2 (5)

�1 = α1 + (j/M)β1 (6)

k = 0, . . . .., N − 1; j = 0, . . . .., M − 1 and N and M are the number
of points along F2 and F1, respectively.

The aim of automatic phase correction is to find the four
parametersα2,β2,α1 andβ1 in order to get an absorption spectrum.

This could be achieved by an iterative process optimizing some
objective function. In previous articles, different functions have
been proposed for the automatic phase correction of 1D spectra,
including maximizing the lowest point of the spectrum[7] or the
entropy of the spectrum.[18] In this work, we introduce a new
objective function, designed specifically for 2D spectra, which we
call whitening and which is defined as the maximization of the
number of white pixels in a 2D image. A 2D NMR spectrum can be
considered as a computer image formed by pixels. Intuitively, it
is easy to appreciate that, if we are going to represent both the
dispersion and the absorption component of a spectrum with two
bitmaps, the number of white pixels will be higher in the latter
one. Generalizing, we can say that the number of white pixels
reaches the maximum when the phase is corrected (Fig. 1).

Looking at the 2D spectrum as an image (Fig. 1), it can be
observed that the number of colored pixels decreases continuously
during the correction. This intuitive concept can be translated into
a computer algorithm by defining an interval [−t, t], with t being a
positive quantity which segments the data points in the spectrum
into two sets:

1. Points whose intensity falls inside the interval (they correspond
to the white points of the image) and

2. Points whose intensity falls outside the interval (they corre-
spond to the colored points).

The only requirement for t is that neither set ever becomes
empty. Under this condition, a decrease of the population of set 2
signals an improvement of the phase correction. In other words, if
P is the number of points whose absolute intensity is higher than
t, minimization of P will yield a phase corrected spectrum. P is a
function of the number of phase parameters by the number of
dimensions. In the case of a 2D spectrum,

P = f ([α2, β2]f 2, [α1, β1]f 1) (7)

In principle, this would require simultaneous optimization of
the four parameters, a process which is both time consuming
and prone to converging to local minima. However, following
the same approach used while correcting the phase manually,
in which one dimension is corrected at a time, automatic phase
correction can also be performed along both orthogonal axes
independently. For example, when correcting the phase along the

Figure 1. Unphased (left) and phased (right) spectra. It can be observed that the number of white pixels in the phased spectrum is larger.
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Figure 2. When correcting the phase along the X-axis, the number of white pixels increases regardless of the state of the phase along the Y-axis and vice
versa.

X-axis, P always decreases, regardless of the fact that the phase
along the remaining axes is already correct or not (Fig. 2). The
independency of the corrections not only simplifies the algorithm,
but it also reduces the computational time and increases the
chances of success.

Therefore, optimization of the objective function P can be
carried out independently along both dimensions. In this work,
we have chosen the well-established simplex algorithm by Nelder
and Mead[23] used to minimize a generic function of n variables,
like P, which has been already successfully applied to the phase
correction of 1D NMR spectra.[7]

The main merits of the whitening principles proposed in this
work are:

• It can be applied to a wide class of spectra, because
it assumes very little about them; for example, it does
not discriminate between homonuclear and heteronuclear
experiments, positive and negative peaks, etc.

• It employs a statistic measure based on thousands or, more
likely, millions of data points, therefore it is little affected by
noise and local artifacts;

• It can be applied to spectra of all dimensionality or to a single,
selected dimension if required.

• Being based on a single and simple principle, there is an ample
space for modifications and optimizations, as will be shown in
the rest of this work.

Experimental

In order to calculate the value of P corresponding to a given phase
correction it is, in theory, necessary to recalculate the real part
of the spectrum. Considering that this real part is recalculated
many times during the minimization process, a computationally
effective trick involves storing, for each point, a couple of values:
the absolute value A and the phase ϕ along the dimension that is
being corrected. When the phase correction δ at this frequency has

been determined, the new real component for the corresponding
point can be calculated as:

R = A cos(ϕ + δ) (8)

If |R| ≥ t, this point contributes to the value of P, increasing
it by one unit. The advantage of using this representation of the
complex spectrum lies in the fact that, for most of the points, there
is no necessity to calculate R. We see, in fact, that:

|R| ≤ A (9)

thus, whenever A < t, the calculation of R can be skipped because
necessarily, |R| ≤ t. There is some freedom in choosing the value
t, a possible solution would be:

t = Ā (the average value of all As) (10)

In a typical homonuclear spectrum, the large and prominent
diagonal keeps the average value significantly higher than the
noise level, therefore more than the half of the points will fall
below t = Ā and it would not be necessary to calculate them.
This single observation can boost the speed of the algorithm by a
factor greater than 2. Even if the weakest cross-peaks are ignored,
correcting the region around the diagonal is enough to correct
the whole spectrum. In other cases, however, the choice of t can
be a little more critical. For example, a common HSQC spectrum
of a small molecule contains a few-weak peaks diluted into an
ocean of noise. Here the average value of the spectrum is almost
coincident with the average value of noise. If a low value of t is
chosen, we will be sampling too many regions of noise which can
mask the effect of the phase changes on P; if the noise cannot be
filtered out, P is no more a correct estimator of phase correction.
If, instead, t is too high, P becomes a constant (zero), regardless of
the phase.

In practice, we have found satisfactory results by setting t = 2 Ā.
In this way, the noisy regions of the spectrum are automatically
ignored and they are prevented from affecting the accuracy of our

www.interscience.wiley.com/journal/mrc Copyright c© 2009 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2009, 47, 322–327
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method. There are also lesser calculations to perform. At the same
time, in all our tests, P has always remained far from zero with this
value of t.

The simplex algorithm, when used to optimize two parameters,
as in this case, requires three starting guesses (they define the
starting position of the simplex into the solution space). When the
starting position is too far from the global minimum, there is the
risk of falling into a local minimum of P that does not correspond
to a correct phase. This fact explains a small percentage of failures,
that can however be prevented. We have devised two different
ways to generate a starting guess that is near enough to the proper
minimum:

1. Applying a mono-dimensional automatic correction on the
orthogonal projections.

2. Using the whitening principle itself for a preliminary scan of
the solution space.

Method 1 involves the calculation of the internal projection as
the sum of all columns (or rows) in the 2D matrix. In the case of
homonuclear correlation spectra, the projection is analogous to
the diagonal. The phase correction calculated by an automatic 1D
algorithm can be used as a rough estimate of the phase correction
of the whole 2D matrix. In this work we have used the algorithm
originally devised by Siegel.[7] This method is satisfactory in the
case of homonuclear correlation, but inapplicable in the case of
an edited-HSQC (with both positive and negative peaks and much
more noise).

The second method is based on an effective way to exploit
the whitening principle itself, but without the simplex algorithm,
to generate a rough estimate of the phase correction. When we
calculate the absolute value of all the points in the matrix, we
register the position of the highest one (the pivot point). Then we
select a narrow band centered around this frequency value along
the axis to be corrected. We calculate the function P neglecting
the rest of the matrix, first without any phase correction, then
again applying two zero-order phase corrections of ±15◦. If P
decreases we keep correcting with identical amounts of zero-
order correction. In other words, we perform a rapid scan along
the axis corresponding to the zero-order correction. The step must
be large enough to overcome random effects, like noise. We stop
the scan as soon as P starts increasing again. When we have
found the zero-order correction for the pivot point, we can find,

in a similar way, the first-order phase correction for the whole
matrix. The calculation of P is no longer restricted to a band, but
performed in the normal way, paying attention to keeping the
phase correction at the frequency of the pivot constant. The step
used for scanning the first-order axis is higher (±30◦). It is easy to
see that, apart from the larger steps, this kind of phase correction
mimics closely the manual process. Once we have determined
our starting point with the described sequential scans, we build
a little triangular simplex around it and are ready to apply the
Nelder–Mead algorithm. A possible weakness of our preliminary
scan is that it stops prematurely when the spectrum is extremely
noisy and the starting position is very far away from the minimum.
In this case there are too many steps to take and, just because
each step entails the risk of interrupting the scan prematurely, the
overall risk becomes sizeable.

In our experience, these two methods for generating the starting
position of the simplex can optionally be combined, in the same
order in which we have described them.

Results

The whitening algorithm has been programmed in C/C++ and
integrated into iNMR[24] and Mnova.[25] All the spectra have
been acquired in Bruker and Varian spectrometers to reflect the
diversity commonly found in an NMR laboratory. In all cases, a
cosine bell-weighting function was applied along the acquired
dimension and a cosine squared bell-weighting function in the
indirect dimension. No baseline correction has been applied to
any of the spectra. All spectra in the figures below are displayed
with the same contour levels.

The performance of the algorithm is demonstrated by the
following examples, which were acquired from different NMR
spectrometers and have different experimental conditions and
artifacts. These spectra were chosen to clearly show the algorithm’s
ability to efficiently deal with spectra with positive and/or negative
peaks and its robustness in conditions of low SNR, presence of
baseline artifacts or large dispersive solvent signals.

For our first example, we applied the algorithm to a TOCSY
spectrum of the human acidic fibroblast growth factor (FGF)
protein[26] with DIPSI Spinlock and Watergate water suppression,
acquired in a 750-MHz Inova Varian spectrometer. As Fig. 3 shows,

Figure 3. TOCSY spectrum of the human acidic fibroblast growth factor (FGF) protein before (left) and after application of the automatic phase correction
algorithm (right).
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the spectrum contains a large residual dispersive signal of water
and baseline artifacts along both dimensions despite which our
algorithm yields a perfectly phase corrected spectrum. In this
case the phase of the water peak is incompatible with the rest
of the spectrum, but the diagonal is the driving force. Another
explanation is that the water peak is so strong that the tails never
become white, therefore they are not ‘seen’ by the algorithm.

In the second example we illustrate the performance of the
algorithm with noisy spectra. The spectrum showed in Fig. 4
corresponds to the HSQC experiment of Strychnine recorded in a
400-MHz Varian instrument. Application of the automatic phase
correction algorithm shows an excellent behavior under these
conditions of low SNR.

A further example corresponding to the TOCSY spectrum of
Strychnine acquired in a 500-MHz Bruker DRX spectrometer is
depicted in Fig. 5. In this case, the raw spectrum exhibits large
phase distortions along both F2 and F1 dimensions. Our whitening
algorithm finds a solution very close to the optimal one found by
careful manual adjustment.

The whitening principle does not make any assumption on the
line shape or sign of the peaks. This is illustrated in Fig. 6 with a
multiplicity-edited HSQC echo-antiecho spectrum recorded in a
400-MHz DRX-Bruker spectrometer using the Bruker HSQCEDETGP
pulse sequence. As it can be observed, what really matters is the

fact that the number of white pixels into the bitmap is the highest
possible.

A valuable feature of the whitening algorithm is its ability to
properly phase data containing crowded antiphase resonances,
such as in DQF–COSY spectra. Such data represent a serious
stumbling block to less experienced NMR users, as these spectra
can be difficult to phase manually. This is shown in Fig. 7 with
the DQF–COSY of Taxol collected in a 300-MHz AMX-Bruker
instrument. The spectrum at the left of the figure shows the
original unphased spectrum while the spectrum at the right shows
the results obtained after applying the automatic phase correction
routine. It is clear that our whitening algorithm yields a correctly
phased spectrum, nearly identical to the manually corrected
counterpart (spectrum not showed). Similar results have been
obtained with other DQF–COSY spectra analyzed by the authors.

Conclusions

The whitening algorithm outlined in this paper has been designed
specifically to deal with characteristic phase distortions commonly
found in 2D NMR spectra. Despite being based on an iterative
simplex algorithm, it has been highly optimized in such a way that,
in most cases, automatic phase correction takes less than 2–3 s in
up-to-date personal computers. It is easy to implement and robust

Figure 4. A noisy HSQC spectrum (left) and the result (right) after automatic phase correction by the whitening algorithm.

Figure 5. A TOCSY spectrum of strychnine before (left) and after automatic phase correction (right).

www.interscience.wiley.com/journal/mrc Copyright c© 2009 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2009, 47, 322–327
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Figure 6. An edited-HSQC spectrum before (left) and after automatic phase correction (right).

Figure 7. Unphased DQF-COSY of Taxol (left) and after phase correction with the whitening algorithm (right).

with respect to experimental noise and baseline imperfections,
peak overlaps and line shapes. It can therefore process either
homonuclear or heteronuclear experiments or spectra containing
only positive peaks or a combination of positive and negative
peaks.

An implementation of the algorithm has been incorporated
into a new autophase routine within the iNMR[24] and Mnova[25]

software packages for NMR processing and analysis.
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